Enhanced acoustic transmission through a slanted grating

نویسندگان

  • A. N. Norris
  • Xiaoshi Su
چکیده

It is known that an acoustic wave incident on an infinite array of aligned rectangular blocks of a different acoustic material exhibits total transmission if certain conditions are met [1] which relate the unique ”intromission” angle of incidence with geometric and material properties of the slab. This extraordinary acoustic transmission phenomenon holds for any slab thickness, making it analogous to a Brewster effect in optics, and is independent of frequency as long as the slab microstructure is sub-wavelength in the length-wise direction. Here we show that the enhanced transmission effect is obtained in a slab with grating elements oriented obliquely to the slab normal. The dependence of the intromission angle θi is given explicitly in terms of the orientation angle. Total transmission is achieved at incidence angles ±θi, with a relative phase shift between the transmitted amplitudes of the +θi and −θi cases. These effects are shown to follow from explicit formulas for the transmission coefficient. In the case of grating elements that are rigid the results have direct physical interpretation. The analytical findings are illustrated with full wave simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Slanted Grating Couplers Between Optical Fiber and InP–InGaAsP Waveguides

We present theoretical and experimental results for compact slanted gratings for vertical coupling between single-mode fiber and InP–InGaAsP waveguides. The maximum calculated coupling efficiency is 59%. We have measured a coupling efficiency of 16% for a 10m-long slanted grating.

متن کامل

Performance Simulation of Side-Pumped Slanted Faces of High Power Yb:YAGYAG Thin-Disk Laser

We present a novel slanted faces of thin-disk composite Yb:YAG YAG laser which is side-pumped by four non-symmetric hollow- ducts. The pump light distribution in the disk is modeled by using Monte-Carlo ray tracing method. The temperature distribution inside the crystal is calculated by taking into account either the concentration of Yb+3 ion or the different transmission of laser output coupl...

متن کامل

Rigorous analysis of extremely asymmetrical scattering of electromagnetic waves in slanted periodic gratings

Extremely asymmetrical scattering (EAS) is a new type of Bragg scattering in thick, slanted, periodic gratings. It is realised when the scattered wave propagates parallel to the front boundary of the grating. Its most important feature is the strong resonant increase in the scattered wave amplitude compared to the amplitude of the incident wave: the smaller the grating amplitude, the larger the...

متن کامل

Rigorous analysis of grazing-angle scattering of electromagnetic waves in periodic gratings

Grazing-angle scattering (GAS) is a type of Bragg scattering of waves in slanted non-uniform periodic gratings, when the diffracted order satisfying the Bragg condition propagates at a grazing angle with respect to the boundaries of a slablike grating. Rigorous analysis of GAS of bulk TE electromagnetic waves is undertaken in holographic gratings by means of the enhanced T-matrix algorithm. A c...

متن کامل

Investigation of enhanced and suppressed optical transmission through a cupped surface metallic grating structure.

Two-dimensional finite-difference time-domain (FDTD) method has been performed to numerically investigate the transmission through a one-dimension cupped surface metallic grating structure. The concept of coupling of optical modes in the notches and main slits, introduced by Crouse and Keshavareddy [1], is examined further in our work. Unexpected phenomenon is shown that even horizontal surface...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015